skip to main content


Search for: All records

Creators/Authors contains: "Xing, Xinxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Computers, televisions, and smartphones are revolutionized by the invention of InGaN blue light‐emitting diode (LED) backlighting. Yet, continual exposure to the intense blue LED emission from these modern displays can cause insomnia and mood disorders. Developing “human‐centric” backlighting that uses a violet‐emitting LED chip and a trichromatic phosphor mixture to generate color images is one approach that addresses this problem. The challenge is finding a blue‐emitting phosphor that possesses a sufficiently small Stokes’ shift to efficiently down‐convert violet LED light and produce a narrow blue emission. This work reports a new oxynitride phosphor that meets this demand. K3AlP3O9N:Eu2+ exhibits an unexpectedly narrow (45 nm, 2206 cm−1), thermally robust, and efficient blue photoluminescence upon violet excitation. Computational modeling and temperature‐dependent optical property measurements reveal that the narrow emission arises from a rare combination of preferential excitation and site‐selective quenching. The resulting chromaticity coordinates of K3AlP3O9N:Eu2+ lie closer to the vertex of the Rec. 2020 than a blue LED chip and provides access to ≈10% more colors than a commercial tablet when combined with commercial red‐ and green‐emitting phosphors. Alongside the wide gamut, tuning the emission from the violet LED and phosphor blend can reduce blue light emissions to produce next‐generation, human‐centric displays.

     
    more » « less
  2. Abstract

    The discovery of photoacoustic laser streaming has opened up a new avenue to manipulate and drive fluids with light, but the necessity of an in situ “launch pad” has limited its utility in real‐world microfluidic applications due to both the size constraint and the complexity of fabrication. Here, it is demonstrated that 1) a versatile microfluidic pump can be materialized by using laser streaming from an optical fiber, and 2) laser streaming can be generated from a flat metal surface without any fabrication process. In the latter case, by focusing laser on the tip of a sewing needle tip, the needle can be turned into a micropump with controllable flow direction. Additionally, high‐speed imaging of the fluid motion and computational fluid dynamics simulations to confirm the photoacoustic principle of laser streaming are employed, and it is revealed that the streaming direction is determined by the direction of strongest intensity in the divergent ultrasound wavefront. Finally, the potential of laser streaming for microfluidic and optofluidic applications is demonstrated by successfully driving fluid inside a capillary tube.

     
    more » « less
  3. Abstract

    The integration of highly luminescent CsPbBr3quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2Br5nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3nanocrystals on CsPb2Br5nanowires is reported first by simply immersing CsPbBr3powder into pure water, CsPbBr3−γ Xγ(X = Cl, I) nanocrystals on CsPb2Br5−γ Xγnanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3powder is first converted to CsPb2Br5microplatelets in water, followed by morphological transformation from CsPb2Br5microplatelets to nanowires, which is a kinetic dissolution–recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2Br5. CsPbBr3nanocrystals are spontaneously formed on CsPb2Br5nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3−γ Xγnanocrystals while CsPb2Br5−γ Xγnanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry–Perot interference modes of the nanowire cavity.

     
    more » « less